library(dplyr) # Create the data frame df <- data.frame( EMPID = c(101, 102, 103, 104, 105), Name = c("John", "Peter", "Bob", "Linda", "Elizabeth"), Age = c(25, 30, 35, 40, 45), Salary = c(50000, 60000, 45000, 70000, 55000), Department = c("HR", "IT", "Finance", "Production", "QualityControl") ) # Filter rows where Age > 25 filtered_data <- filter(df, Age > 25) # Select specific columns selected_columns <- select(df, EMPID, Name, Salary) # Mutate by adding a new column for adjusted salary mutated_data <- mutate(df, Salary_Adjusted = Salary * 1.1) # Group by Department grouped_data <- group_by(df, Department) # Summarize grouped data summarized_data <- summarize(grouped_data, Avg_salary = mean(Salary), Max_Age = max(Age) ) # Arrange data by Age and descending Salary arranged_data <- arrange(df, Age, desc(Salary)) # Create another data frame for joining df2 <- data.frame( EMPID = c(103, 104, 105), Bonus = c(2000, 3000, 5000) ) # Perform a left join joined_data <- left_join(df, df2, by = "EMPID") # Print results print("Filtered Data:") print(filtered_data) print("Selected Columns:") print(selected_columns) print("Mutated Data:") print(mutated_data) print("Summarized Data:") print(summarized_data) print("Arranged Data:") print(arranged_data) print("Joined Data:") print(joined_data)